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1 Introduction 
In this report we examine measurements from two different sensors, for detecting a diversion of 

plutonium in an electro-refining (ER) process. One method is based on counts from a high dose neutron 
detector (HDND). The other is based on spectra from a micro-calorimeter sensor. The spectra comes 
from the ER-salt, from fission product waste and from a source term. The goal is to differentiate 
between normal and off normal operating conditions using neutron counts or changes in counts in the 
spectra. Unfortunately, there is no electro-refining process that we can actually monitor to obtain real 
data from various operating conditions so we will use simulated data to illustrate our approach.  The 
data used to simulate the performance of the HDND and the microcalorimeter was provided by the 
Separations and Safeguards Performance Model (SSPM) [1].  The SSPM EChem software tracks material 
flows and mass inventories through each unit operation of an electrochemical reprocessing plant. In 
mid-May the advanced integration team received a mass inventory data set for each unit operation 
within SSPM. The data provided masses for each element 1-99 in the periodic table and was reported in 
hourly increments out to one operational year (6480 hours). Isotopic ratios, though tracked separately in 
SSPM, were also provided for each unit process on an hourly basis for 266 nuclides. Isotopic mass 
compositions were created by combining the elemental mass data with the isotopic ratios for each unit 
process. This enabled the development of realistic neutron and gamma source terms that could be 
distributed to technology development groups enabling deeper evaluation of detection performance. 

 

2 Simulation of the HDND 
Neutron source terms were generated from the isotopic mass concentrations for the uranium 

(U) and uranium-transuranic (U/TRU) products to enable simulations of the High-Dose Neutron Detector 
(HDND) response. The SOURCES 4C code, developed at LANL to calculate energy dependent alpha-n, 
spontaneous fission, and delayed neutron sources and spectra [2], was used to generate the source 
terms. A python script was written to convert the raw SSPM mass data into a SOURCES 4C input tape, 
then read the output and print the neutron energy spectrum to a text file. Automation of this process 
allowed the generation of neutron source terms for a variety of cases with general ease.  
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Several possible scenarios were considered and neutron source terms were generated for each 
case. The cases included steady-state masses of radionuclides in the U and U/TRU product, a diversion of 
1% of the plutonium mass from the U/TRU product into the U product, and a diversion of 1% of the full 
U/TRU product mass into the U product. The strongest source of neutrons in the U/TRU product is 
curium, as shown in Tables 1 and 2. During normal operation plutonium and curium remain comingled. 
However, it may be feasible to separate the plutonium from the curium in a diversion scenario, 
drastically reducing the neutron signal of the diverted material. Therefore, cases were chosen to enable 
the establishment of a baseline count-rate in the HDND under normal operating conditions, then look at 
the response to a diversion in which the plutonium and curium are comingled vs separated.  

 

Table 1. Neutron emissions from selected radionuclides in the U Product ingot. 

U Product 
Source Normal 1% Pu 1% U/TRU 
Nuclide (n/s-cm3) (n/s-cm3) (n/s-cm3) 
U-238 0.254 0.254 0.254 
Pu-238 0.000 0.169 0.169 
Pu-240 0.001 0.653 0.653 
Pu-242 0.000 0.342 0.342 
Cm-244 0.072 0.072 83.35 
Cm-246 0.003 0.003 3.369 
Total 0.330 1.493 88.42 

 

 

Table 2. Neutron emissions from selected radionuclides in the U/TRU Product ingot. 

U/TRU Product 
Source Normal 1% Pu 1% U/TRU 
Nuclide (n/s-cm3) (n/s-cm3) (n/s-cm3) 
U-238 0.16 0.15 0.15 
Pu-238 473 444 444 
Pu-240 1828 1719 1719 
Pu-242 957 899 899 
Cm-244 233300 221500 219300 
Cm-246 9431 8954 8864 
Total 246800 234300 232000 

 

 

Radiation transport simulations were carried out with MCNP6.2 [3] using the source terms 
developed from the SSPM U, and U/TRU product mass data and a detailed model of the detector 
provided by the HDND team. The exact dimensions of the U and U/TRU ingots are not known however 
the mass, density (assumed uranium metal, 18.9 g/cm3), and therefore volume are known. Approximate 
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dimensions were chosen to preserve the total mass in each ingot, 72x16x16 cm and 14x7x7 cm 
respectively. The center of each ingot was placed 20 inches from the face of the detector in simulations.  

The HDND is comprised of parallel plates of gas-proportional counters lined with boron-10. 
Neutrons are detected via the 10B(n,α)7Li reaction whereby a pulse is produced in the detector when a 
neutron is captured in the boron lining and the subsequent reaction products deposit some or all of their 
energy in the counting gas. The HDND team had previously developed an MCNP model that simulated 
the response of the detector for design optimization. This model was used to find the response of the 
detector to the neutron source from each of the cases described above. The results of the model are 
shown in Table 3 and represent the number of neutron reactions that deposit enough energy in the 
counting gas to produce a pulse. Efficiency effects of the signal processing electronics are not included in 
the model.  

 

Table 3. Pulse rate produced in detector. 

Ingot Normal 1% Pu 1% U/TRU  
pulses/s pulses/s Pulses/s 

U Product 7.93 36.76 2192.6 
U/TRU Product 66098.1 63992.4 64311.5 

 

 

Most materials that emit neutrons also emit gamma rays which can deposit their energy in the 
counting gas of a detector and register a pulse, just as a neutron would, producing a ‘fake’ neutron 
count. In high gamma radiation fields this can make accurate neutron counting difficult or impossible. 
One of the ways the HDND can become less sensitive to gamma rays is by reducing the high voltage 
setting, effectively increasing the amount of required energy deposited to generate a pulse. Operating at 
a reduced high voltage setting greatly decreases the detector’s sensitivity to gamma rays, however the 
neutron efficiency is also somewhat lowered.  

Gamma dose rate calculations were performed with MCNP6.2 for the U/TRU ingot in order to 
understand how the gamma rays emitted from the ingot would affect the neutron counting efficiency of 
the HDND. Based on the SSPM mass data, the full U/TRU ingot (13 kg) has an activity of ~20,000 curies. 
The spontaneous decay feature within MCNP [4] was used to generate the delayed-gamma spectrum 
from the U/TRU ingot then transport those gammas in the problem. The resultant dose rate from 
gammas at the face of the detector (20 in from ingot) was calculated to be ~3 rem/hr. The HDND has 
demonstrated capability to operate at much higher gamma background environments [5] therefore the 
effect on neutron detection efficiency at these dose rates is expected to small.   

 

3 Statistical Detection of Off Normal Conditions Using a HDND 
In this section we consider a statistical approach for detecting a diversion of Pu by counting 

neutrons with a HDND. We consider process monitoring for a pure uranium product and for a U/TRU 
product as discussed in the last section. 
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Under normal conditions and no background, we expect the neutron count rate from a uranium 
ingot to be about 7.9 pulses/sec. If 1% of the plutonium mass from the U/TRU product is diverted to the 
ingot we expect the count rate to be about 36.8 pulses/sec. 

For the U/TRU product, under normal operating conditions and no background, we expect the 
count rate to be about 66098.1 pulses/sec and if 1% of the Pu mass is diverted we expect the count rate 
to be about 64640.4 pulses/sec. 

 

3.1 Detecting Diversion for U Product 
For the remainder of this section consider just the case of the uranium ingot. If we monitor the 

process with a HDND for say, 5 minutes, the mean count rates for normal operation and 1% Pu diversion 
are 2370 pulses/300sec and 11040 pulses/300sec, respectively. If counts can be modeled by a Poisson 
distribution the standard deviation of counts is the square root of 2370 or about 49 pulses/300sec 
(assuming no diversion and a 5 minute count time). Clearly, if we observe counts on the order of 11040 
in a 5 minute interval we have observed something quite unusual; 11040 is about 178 standard 
deviations above the no diversion mean of 2370.  If neutron counts can be modeled reasonably well by a 
Poisson distribution the discussion in the previous paragraph suggest using the statistic: 

 

𝑍𝑍 =  
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜

�𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜
 

 

to detect a difference in counts. Here “expected” is the no diversion mean count rate and “observed” is 
the measured count rate. If there is a diversion of Pu the observed count rate will be larger than what is 
expected under normal operation and the observed value of Z will be large. To quantify what constitutes 
a large observed count we need to know the distribution of Z when there is no diversion. 

For the examples we consider in this report if there is no diversion and the count time is at least 
5 minutes, standard statistical theory can be used to show that Z will have an approximate (standard) 
Gaussian distribution with mean 0 and variance 1. Quantiles of the standard Gaussian can be used to set 
a threshold to distinguish between typical no diversion count rates and unusual count rates. Choosing a 
particular threshold determines a process monitoring false alarm rate. For example, the 95th quantile of 
the standard Gaussian is 1.645. If we choose 1.645 as the threshold and there is no diversion, then 95% 
of the time Z will be less than 1.645 and 5% of the time Z we be greater than the threshold, which 
implies that 5% is the false alarm rate. 

For the example above with a 5 minute count time and a 1% diversion of Pu, on average 

Z will be: 

 

𝑍𝑍 =  
(5 ∗ 60 ∗ 36.8)− (5 ∗ 60 ∗ 7.9)

√5 ∗ 60 ∗ 7.9
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=  √300 ∗
(36.8 − 7.9)

√7.9
 ≈ 178 

 

A value of 178 is highly unusual if there is no diversion (the 99.999th quantile of a standard Gaussian is 
about 4.26). Either we observed something extremely rare or there was a diversion. Note that the last 
equation above shows how count times influence Z and ultimately the probability of detection. For 
count time T we have: 

 

𝑍𝑍 =  
√𝑇𝑇(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜)

�𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜
. 

 

Clearly, as count time increases the ability to detect a difference between observed and 
expected counts increases. 

The above discussion considered only the case of a 1% diversion and no background noise. More 
generally, we would like to know the probability of detection for different diversion amounts and also 
what effect background has on the probability of detection. 

Ideally, to estimate the probability of detection, we would actually perform many physical 
experiments where Pu was diverted in the electro-refining process, count the neutrons and see how 
often Z detected a significant difference. As this is not possible we will use simulations to estimate the 
probability of detection for various count rates and different backgrounds. 

 

3.2 Estimated Probability of Detection 
       In this section we describe the algorithm used to estimate the probability of detection (PD) for 
various diversion count rates and background rates. For the uranium product, any diversion of Pu will 
lead to an increase in the count rate. For the U/TRU product a diversion of Pu will lead to a decrease in 
the count rate. 

The following lists give the parameters that need to be set for each simulation and the steps 
involved in estimating the PD. In the results presented below we used three different backgrounds for 
the U product and three for the U/TRU product. 

 

Parameters Set by User: 

• Q quantile from standard Gaussian distribution that determines the false alarm rate (e.g. choose 
1.645 for a 5% false alarm rate) 

• S0 the mean count rate for normal operating conditions (either 7.9 or 66098.1 pulses/sec) 

• S1 the mean count rate when some amount of Pu has been diverted (pulses/sec) 
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• B the mean count rate for the background (pulses/sec) 

• T the time to count neutrons in seconds (we used 300 and 600) 

 

Simulation Steps: 

1. µ0 = (S0 + B)T , the no diversion mean count rate in a unit of time T 

2. µ1 = (S1 + B)T , the diversion mean count rate in a unit of time T 

3. Simulate N pseudo-random Poisson counts with mean µ1. Let wi be the observed count from 
simulation i, for i = 1, . . . , N (we used N = 100000) 

4. Calculate 𝑍𝑍𝑖𝑖 = (𝑤𝑤𝑖𝑖 −  𝜇𝜇0)/� 𝜇𝜇0  , for i = 1, . . . , N 

5. Estimate the probability of detection (PD) as the fraction of times Zi is greater than the 
threshold Q 

6. Note, if µ1 = µ0 the PD should be very close to the false alarm rate with any difference due to 
simulation error. As N gets large this error should approach 0. 

In the following sections we show probability of detection rates for the U and U/TRU products. 
Because the two products have very different mean count rates the simulation parameters need to be 
quite different. 

 

4 U Product 
This section shows estimated probability of detection for the U product. Recall that a 1% 

diversion of Pu will result in a count rate of 36.8 pulses/sec, which is quite easy to detect, even in the 
presence of significant background noise. To make results a little more interesting we decided to use 
diversion count rates from 8 to 9 pulses/sec. The following list shows the parameters of the simulation. 

• Normal (no diversion) count rate: 7.9 pulses/sec 

• Background: none, 100% of normal (or 7.9 pulses/sec) and 200% of normal (or 15.8 pulses/sec) 

• Diversion count rates (pusles/sec): 10 equally spaced values from 7.9 to 9. Note that 7.9 
corresponds to no diversion. 

• Count time: 5 and 10 minutes 

• False alarm rate: 5% 

• Number of simulations: 100000 

Figure 1 shows the probability of detection for the various scenarios plotted as a function of the 
no background count rates. The dashed curves correspond to 5 minute count times and the solid curves 
correspond to 10 minute count times. Curves of the same color have the same background count rate. 



UNCLASSIFIED 
LA-UR-18-DRAFT 

 UNCLASSIFIED 7  

Comparing two curves of the same color shows that the PD is higher for longer count times. 
Comparing solid curves of different colors or dashed curves of different colors shows that the PD is 
higher for lower background counts. As expected, higher count times and lower backgrounds result in 
higher PD. Note that the dashed blue curve and the red solid curve are essentially the same. This says 
that counting for 5 minutes with no background (dashed blue) gives the same PD as counting for 10 
minutes when background is 7.9 pulses/sec (solid red) which is a coincidence of the parameters used in 
the simulations. 

Each circle on a curve is a PD for a particular simulation scenario. The PD is estimated by 
counting how many times the statistic Z exceeds some threshold. Figure 2 shows a histogram of all the 
values for one scenario. This particular scenario has a 10 minute count time and a diversion count rate 
with no background of 8.14 pulses/sec. Every point on every curve in Figure 1 has a similar histogram. 

 

 

No Background Count Rates (pulses/s) 

 

Figure 1: Probability of detection for various count rates, times, and backgrounds. Curves of the same 
color have the same background count rate. Note that the dashed blue curve plots under the solid red 

curve. 
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Observed Counts 

 

Figure 2: Observed counts for one off normal rate and no background. Compare to the third circle on the 
solid blue curve in the previous figure. 

 

 

5 U/TRU Product 
This section shows estimated probability of detection for the U/TRU product. Recall that a 1% 

diversion of Pu will result in a count rate of 64640.4 pulses/sec, which is quite easy to detect, even in the 
presence of significant background noise. Because count rates are so high relatively small difference in 
rates can be detected quite easily. Because of this we decided to examine what effect very high 
background rates have on the PD. The following list shows the parameters of the simulation. 

• Normal (no diversion) count rate: 66098.1 pulses/sec 

• Background: none, 20 times normal and 50 times normal 

• Diversion count rates (pusles/sec): 10 equally spaced values from 64640.4 to 66098.1. Note that 
66098.1 corresponds to no diversion. 

• Count time: 5 and 10 minutes 

• False alarm rate: 5% 

• Number of simulations: 100000 
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Figure 3 shows the probability of detection for the various scenarios plotted as a function of the 
no background count rates. The dashed curves correspond to 5 minute count times and the solid curves 
correspond to 10 minute count times. Curves of the same color have the same background count rate. 

The reason background rates have to be so high to see some difference in PD is because, with 
Poisson data, the standard deviation is the square root of the mean and, compared to the mean, the 
square root of the mean is relatively small when counts are large. Also, if we look at the form of the Z 
statistic we can see just how unusual a count of 64640.4 is relative to the no diversion mean count rate 
of 66098.1 

 

𝑍𝑍 =  
(66098.1− 64640.4)

√66098.1
≈ 5.7 

 

In other words, a count rate of 64640.4 is about 5.7 standard deviations from the mean rate of 
66098.1. So, if we count for even a small amount of time the difference becomes highly significant. For 
example, if we count for 5 minutes the Z value is √300(5.7), or about 98 standard deviations from the 
no diversion mean. Continuing further, if the background rate is X times the no diversion rate and the 
count time in seconds is T, then on average we will have 

 

𝑍𝑍 =  
√𝑇𝑇((𝑋𝑋 + 1)𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 − �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑋𝑋(𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜)�)

�(𝑋𝑋 + 1)𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜
 

 

=
√𝑇𝑇(𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

√𝑋𝑋 + 1�𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜
. 

 

If there is no background then X is 0 and this is the Z statistic above (with observed and expected 
switched in the numerator). The last line shows the benefit of long count times. 
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Figure 3: Probability of detection for various count rates, times, and backgrounds. Curves of the same 
color have the same background count rate. Note that the dashed blue curve plots under the solid red 

curve. 

 

  

6 Simulation of the Microcalorimeter 
The mircrocalorimeter has been identified as a technology that can provide remarkably higher 

energy resolution than other such instruments for gamma spectroscopy such as HPGe [6]. The following 
sections detail new information regarding the performance of the microcalorimeter given new data.  For 
details on how the microcalorimeter is modeled and PD’s determined, the reader is encouraged to read 
the previous report [7]. Gamma source terms were created from the SSPM mass data using the Intrinsic 
Source Constructor (ISC) code [8] at several locations to evaluate the microcalorimeter response to each 
of these materials. Locations evaluated were the source term, ER salt, and fission product waste. The 
gamma source terms for each of these locations were then used to simulate the microcalorimeter 
response in GEANT4 [9]. Figure 4 shows a microcalorimeter spectrum generated from the ER salt gamma 
source term. The five largest peaks belong to Am-241, Eu-154, Eu-155, and Pb-212.  
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Figure 4: Microcalorimeter spectrum generated from ER salt gamma source term. 

 

7 Microcalorimeter Spectra for ER-Salt 
This section looks at detecting a diversion in the ER-salt based on spectra of counts from the 

microcalorimeter sensor. Figure 5 shows four high intensity gamma lines that correspond to isotopes we 
used in a previous study. Figure 6 shows detection probabilities for a 5% false positive rate when 1% and 
1.5% Pu is diverted. Because counts are so high we only used the Eu-155 peak at 105.31 keV. 

The methodology for generating the PD’s shown in Figure 6 for the microcalorimeter are 
detailed in the previous advanced integration report [7].  The reader is invited to review that report to 
discover modeling details of the microcalorimeter.  
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Figure 5: ER-salt isotopes of interest. 
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Figure 6: Monitoring ER-salt with Eu-155 counts at 105.31 keV 

 

 

8 Micro-Calorimeter Spectra for Source Term 
Figure 7 shows ten high intensity gamma peaks from the source term. For almost all of the 

isotopes, it’s hard to tell what energy bin contains the “peak”. If a peak can’t be clearly defined then it 
will be hard to use that peak for detecting a diversion using the micorcalorimeter. 

For illustration consider the data in the top panel of Figure 8. The Np-239 peak is supposed to be 
at 106.12 keV and there are two high counts near this energy. How many data points on each side of 
106.12 actually belong to the peak is hard to say and including data that is essentially just noise is going 
to lower the detection probability.  
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The bottom plots in Figure 8 shows detection probabilities for two scenarios. For both scenarios 
the signal is between 106.06 and 106.18, which corresponds to the data between the blue lines in the 
top panel. The bottom left plot shows a histogram of values of the test statistic when we include noise 
data from 105.8 to 106.44 (solid black lines). The probability of detecting a diversion is about 32%.  The 
bottom right plot is similar but we only include noise data from 106.02 to 106.22 (dashed black lines). 
The probability of detecting a diversion is now about 59%. This illustrates the importance of being able 
to define the regions of interest when determining detection probabilities for the microcalorimeter. 

 

Figure 7: ER source term isotopes of interest. 
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Figure 8: Top panel shows data around the Np-239 peak at 106.12. To estimate a probability of 
detection (PD) we defined the signal to be between 106.06 and 106.18 (solid blue lines). The bottom left 
panel shows the PD when we include noisy counts between the solid black lines and the blue lines. The 
bottom right panel shows the PD when the noisy counts are between the dashed black lines and the blue 
lines. 
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9 Voltammetry 
At the conclusion of this year, the advanced integration team began working with the 

Voltammetry team from ANL.  Initial results were generated that still need to have statistical integration 
done to determine the performance of the voltammetry sensor.  This section highlights the data we have 
received.  Elemental mass data from the SSPM model was sent to the Voltammetry technology 
development team at ANL. With this data they were able to simulate the response of their voltammetry 
sensor to several ER salt compositions. The response of the voltammetry sensor is shown as the bold 
black line in Figure 9. The contributions of different species are also shown in the figure with dotted 
lines.  

 

Figure 9: Voltammetry response to ER salt composition (data and figure courtesy of N. Hoyt – 
ANL). 

 

Three more simulations were requested that represented a reduction of 1%, 5%, and 10% 
plutonium concentration in the salt. Figure 10 shows a plot of the region associated with the plutonium 
peak and displays the effect of decreasing the plutonium concentration in the salt on the waveform. 
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Figure 10: Changes in voltammetry waveform as a result of reduced plutonium concentrations in 
the ER salt (data courtesy of N. Hoyt – ANL). 

 

Currently, as of the writing of this report, work is on-going to interpret the results presented in Figures 9 
and 10.  Future reporting will include results from this data. 

 

10 Conclusions 
We have successfully demonstrated advanced integration methods for incorporating the HDND 

and microcalorimeter MPACT sensor technology for detection near an electrorefiner.  The methods have 
been calibrated with an agreed upon flowsheet from SSPM provided by SNL.  General conclusions can be 
made regarding the performance of the HDND and microcalorimeter including but not limited to:  The 
HDND has been shown to be highly effective at the specified locations to check U product and U/TRU 
product for Pu diversions of relatively small amounts of Pu.  The microcalorimeter is good at detecting 
small diversions using intense peaks in the spectrum as the statistical data point.  Elements such as 
Americium, Curium, Uranium and Neptunium are good indicators only if the peaks standout in the 
spectrum.  Large peaks such as Eu-155, Am-241, Eu-154, and U-239/Am-243 may be utilized for 
detection once better isotopic data is known as well as understanding how these isotopes change 
according to diversions.  These determinations were made based on the variability in counting statistics 
and future work will need to account for other sources of uncertainty.  Future work will include 
advanced integration methods used at exploring additional MPACT developed sensor technologies, such 
as the Voltammetry detector and microfluidic sampler.  



UNCLASSIFIED 
LA-UR-18-DRAFT 

 UNCLASSIFIED 18  

References 
1. Cipiti, Benjamin B., et al. “Modeling and Design of Integrated Safeguards and Security for an 

Electrochemical Reprocessing Facility” Sandi Report, SAND2012-9303 (2012). 

2. Wilson, W. B., et al. “SOURCES 4C: A Code for calculating (α,n), Spontaneous Fission, and 
Delayed Neutron Sources and Spectra” Proc. of the Radiation Protection and Shielding 12th 
Biennial Topical Meeting, Santa Fe, NM April 14-18 (2002) 

3. C.J. Werner(editor), "MCNP Users Manual - Code Version 6.2", Los Alamos National Laboratory, 
report LA-UR-17-29981 (2017). 

4. Tutt, J. R., McKinney, G. W., Wilcox, T. A., “All-Particle Spontaneous-Decay and Delayed-Positron 
Capabilities in MCNP6”, Proc. of the American Nuclear Society ANTPC, Santa Fe, NM September 
27th (2016). 

5. Henzlova, D., Menlove, H. O., “High-Dose Neutron Detector Development for Measuring 
Alternative Fuel Cycle Materials”, Proc. of GLOBAL 2017, Seoul, Korea September 24-29 (2017). 

6. Hoover, A. S., et al. “Determination of Plutonium Isotopic Content by Microcalorimeter Gamma-
Ray Spectroscopy”, IEEE Transactions on Nuclear Science, Vol. 60, No. 2, April (2012). 

7. Key, B. P., et al.  “Advanced Integration Methods for Monitoring an Electrorefining Process”, Los 
Alamos National Laboratory, report LA-CP-18-20204 (2018). 

8. Solomon, C. J., “The Intrinsic Source Constructor Package: Installation and Use”, Los Alamos 
National Laboratory, report LA-UR-12-22234 (2017). 

9. Agostinelli, S., et al. “Geant4 – a simulation toolkit,” Nucl. Instrum. Meth. Phys. Res., vol. A 506, 
pp. 250-303, (2003). 

 

 


